57 research outputs found

    Physical exercise and cardiovascular response:design and implementation of a pediatric CMR cohort study

    Get PDF
    To examine feasibility and reproducibility and to evaluate the cardiovascular response to an isometric handgrip exercise in low-risk pediatric population using Cardiovascular Magnetic Resonance measurements. In a subgroup of 207 children with a mean age of 16 years participating in a population-based prospective cohort study, children performed an isometric handgrip exercise. During rest and exercise, continuous heart rate and blood pressure were measured. Cardiovascular magnetic resonance (CMR) measurements included left ventricular mass, aortic distensibility and pulse wave velocity at rest and left ventricular end-diastolic and end-systolic volumes, ejection fraction, stroke volume and cardiac output during rest and exercise. 207 children had successful CMR measurements in rest and 184 during exercise. We observed good reproducibility for all cardiac measurements. Heart rate increased with a mean ± standard deviation of 42.6% ± 20.0 and blood pressure with 6.4% ± 7.0, 5.4% ± 6.1 and 11.0% ± 8.3 for systolic, diastolic and mean arterial blood pressure respectively (p-values &lt; 0.05). During exercise, left ventricular end-diastolic and end-systolic volumes and cardiac output increased, whereas left ventricular ejection fraction slightly decreased (p-values &lt; 0.05). Stroke volume did not change significantly. A sustained handgrip exercise of 7 min at 30-40% maximal voluntary contraction is a feasible exercise-test during CMR in a healthy pediatric population, which leads to significant changes in heart rate, blood pressure and functional measurements of the left ventricle in response to exercise. This approach offers great novel opportunities to detect subtle differences in cardiovascular health.</p

    Optimized Preoperative Planning of Double Outlet Right Ventricle Patients by 3D Printing and Virtual Reality:A Pilot Study

    Get PDF
    OBJECTIVES: In complex double outlet right ventricle (DORV) patients, the optimal surgical approach may be difficult to assess based on conventional two-dimensional (2D) ultrasound (US) and computed tomography (CT) imaging. The aim of this study is to assess the added value of 3D printed and 3D Virtual Reality (VR) models of the heart used for surgical planning in DORV patients, supplementary to the gold standard 2D imaging modalities.METHODS: Five patients with different DORV-subtypes and high-quality CT scans were selected retrospectively. 3D prints and 3D-VR models were created. Twelve congenital cardiac surgeons and paediatric cardiologists, from three different hospitals, were shown 2D-CT first, after which they assessed the 3D print and 3D-VR models in random order. After each imaging method, a questionnaire was filled in on the visibility of essential structures and the surgical plan.RESULTS: Spatial relationships were generally better visualized using 3D methods (3D printing/3D-VR) than in 2D. The feasibility of VSD patch closure could be determined best using 3D-VR reconstructions (3D-VR 92%, 3D print 66%, and US/CT 46%, P &lt; 0.01). The percentage of proposed surgical plans corresponding to the performed surgical approach was 66% for plans based on US/CT, 78% for plans based on 3D printing, and 80% for plans based on 3D-VR visualization.CONCLUSIONS: This study shows that both 3D printing and 3D-VR have additional value for cardiac surgeons and cardiologists over 2D imaging, because of better visualization of spatial relationships. As a result, the proposed surgical plans based on the 3D visualizations matched the actual performed surgery to a greater extent.</p

    Echocardiographic Assessment of Embryonic and Fetal Mouse Heart Development: A Focus on Haemodynamics and Morphology

    Get PDF
    Background. Heart development is a complex process, and abnormal development may result in congenital heart disease (CHD). Currently, studies on animal models mainly focus on cardiac morphology and the availability of hemodynamic data, especially of the right heart half, is limited. Here we aimed to assess the morphological and hemodynamic parameters of normal developing mouse embryos/fetuses by using a high-frequency ultrasound system. Methods. A timed breeding program was initiated with a WT mouse line (Swiss/129Sv background). All recordings were performed transabdominally, in isoflurane sedated pregnant mice, in hearts of sequential developmental stages: 12.5, 14.5, and 17.5 days after conception (n=105). Results. Along development the heart rate increased significantly from 125 ± 9.5 to 219 ± 8.3 beats per minute. Reliable flow measurements could be performed across the developing mitral and tricuspid valves and outflow tract. M-mode measurements could be obtained of all cardiac compartments. An overall increase of cardiac systolic and diastolic function with embryonic/fetal development was observed. Conclusion. High-frequency echocardiography is a promising and useful imaging modality for structural and hemodynamic analysis of embryonic/fetal mouse hearts

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Full text link
    Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards

    Longitudinal follow-up of ventricular performance in healthy neonates

    No full text
    Specific follow-up of newly introduced echocardiographic parameters in healthy neonates and infants is limited. To prospectively describe follow-up of left ventricular (LV) tissue Doppler imaging (TDI) and speckle tracking strain parameters in healthy subjects up to two months after birth. This is a longitudinal follow-up study. Twenty-eight (10 male) healthy newborns were included and underwent transthoracic echocardiography 1-3days, 3weeks and 6-7weeks after birth. In each echocardiogram, parameters describing cardiac growth, including LV mass (LVM), were assessed. Additionally, TDI derived peak systolic velocity (S') and peak early (E') and late (A') diastolic velocities were assessed in the basal LV free wall and interventricular septum (IVS). Finally LV longitudinal, radial and circumferential global peak strain parameters were assessed using speckle tracking strain imaging. LVM significantly increased during follow-up (7.6±2.4 versus 12.4±3.2g, p=0.002). Similarly at 1-3days versus 6-7weeks after birth, an increase in LV and IVS systolic (LV S' 4.1±1.5 versus 6.3±1.5cm/s, p=0.001; IVS S' 3.6±0.9 versus 6.4±1.3cm/s, p <0.001) and diastolic (LV E' 6.1±2.2 versus 9.7±2.9cm/s, p=0.002; IVS E' 5.1±1.4 versus 10.7±3.3cm/s, p <0.001) TDI parameters was observed. In contrast, global peak longitudinal, radial and circumferential strain parameters did not significantly change during follow-up. A significant increase in LV systolic and diastolic TDI parameters was observed up to two months after birth. Yet this increase may be (cardiac) growth-dependent. No significant changes were observed in speckle tracking strain derived global peak strain parameters; this may render the technique particularly valuable in evaluation of LV systolic performance during periods of significant growth, such as the neonatal perio
    • …
    corecore